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In this paper it is shown that a continuous spatial distribution of undamped secondary
oscillators can produce damping in an otherwise undamped primary spring–mass system.
Damping here refers to exact exponential decay, valid for all time, in the vibration of the
primary system. The continuous distribution of secondary oscillators is the limiting case
of a large number of discrete secondary oscillators, and thus this paper may be related
to recent papers by Pierce et al. [1], Strasberg and Feit [2] and Weaver [3]. Wave
propagation in systems with continuous distributions of attached oscillators has been
considered by Zozulya and Rybak [4, 5].

The system considered here is shown in Figure 1. A primary mechanical oscillator with
mass M and stiffness k0 is connected to a set of secondary oscillators with mass m(j) and
stiffness k(j). It is assumed that the secondary oscillators are continuously distributed; the
variable j may be thought of as a dimensionless spatial co-ordinate which has values in
the interval 0Q jQ 1. The distributed set of secondary oscillators is analogous in some
ways to the distributed elastic foundation which is used in many structural applications.

The equations of motion for the system in Figure 1 are

MẍM (t)+ k0xM (t)+g
1

0

dj k(j)(xM (t)− x(j, t))=0, (1)

m(j)ẍ(j, t)+ k(j)(x(j, t)− xM (t))=0, 0Q jQ 1. (2)

It is assumed that the initial conditions are

xM (0)= x(j, 0)= ẋ(j, 0)=0, ẋM (0)= v0, (3, 4)

and it is desired to derive the dynamic response of the system for tq 0.
Introducing the Laplace transform according to the usual definitions

x̃M (s)=g
a

0

dt xM (t) e−st, x̃(j, s)=g
a

0

dt x(j, t) e−st (5, 6)

and applying the initial conditions given by equations (3) and (4), equations (1) and (2)
become

M(s2x̃M (s)− v0)+ k0x̃M (s)+g
1

0

dj k(j)(x̃M (s)− x̃(j, s))=0, (7)

m(j)s2x̃(j, s)+ k(j)(x̃(j, s)− x̃M (s))=0. (8)
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From equations (7) and (8) there follows

x̃M (s)= v0>$s2 +V2
0 + s2 g

1

0

dj
V2(j)(m(j)/M)

s2 +V2(j) % (9)

and

x̃(j, s)=
V2(j)v0

(s2 +V2(j))0s2 +V2
0 + s2 g

1

0

dj
V2(j)(m(j)/M)

s2 +V2(j) 1
, (10)

where

V2(j)= k(j)/m(j) and V2
0 = k0/M. (11, 12)

In order to obtain relatively simple inverse Laplace transforms of equations (9) and (10),
it is assumed that the mass and stiffness of the distributed oscillators are given by the
particular functions

m(j)= mM/[(1− j)2 + j2] (13)

and

k(j)= mk0j
2/(1− j)2[(1− j)2 + j2], (14)

where m is a dimensionless constant. The mass m(j) is finite everywhere, and the total
distributed mass is

g
1

0

dj m(j)=g
1

0

dj
mM

(1− j)2 + j2 (15)

= mM g
1

0

dj

(1− j)2

1
1+ j2/(1− j)2. (16)

Changing the variable of integration from j to u= j/(1− j), equation (16) becomes

g
1

0

dj m(j)= mM g
a

0

du
1

1+ u2 (17)

= mpM/2, (18)

so that the ratio of the total distributed mass to the mass M of the primary oscillator is
mp/2. The stiffness k(j) ranges from zero (no coupling to the primary oscillator) at j=0
to infinity (rigid coupling to the primary oscillator) as j:1. The functions m(j) and k(j)
in equations (13) and (14) are special choices, but they are physically plausible and they
allow the interesting dynamic behavior of the system in Figure 1 to be obtained explicitly.

Using equations (13), (14) and (11), the integral term in the denominator of the right
sides of equations (9) and (10) becomes

s2 g
1

0

dj
V2(j)(m(j)/M)

s2 +V2(j)
= s2 g

1

0

dj
m

(1− j)2 + j2

V2
0j

2/(1− j)2

s2 +V2
0j

2/(1− j)2 (19)

= s2mV2
0 g

1

0

dj

(1− j)2

j2/(1− j)2

(1+ j2/(1− j)2)(s2 +V2
0j

2/(1− j)2)
(20)
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= s2mV2
0 g

a

0

du
u2

(1+ u2)(s2 +V2
0u

2)
(21)

= s2mV2
0 g

a

0

du
1

V2
0 − s2 0 1

1+ u2 −
s2

s2 +V2
0u

21 (22)

= [(s2mV2
0/(V2

0 − s2)](p/2)(1− s/V0). (23)

To obtain equation (23) the integral formula

I(s)=g
a

0

du

s2 +V2
0u

2 =6+ p/2V0s, Re {s}q 0,
− p/2V0s, Re{s}Q 0

(24)

has been used. Since Re {s}q 0 on the Bromwich path which is used to invert the Laplace
transforms in equations (9) and (10), the result I(s)=+p/(2V0s) is used in equation (23).

Substitution of equation (23) into equations (9) and (10) now gives, after some
manipulation,

x̃M (s)= (1+ s/V0)(v0/V2
0 )/[s3/V3

0 + (s2/V2
0)(1+ mp/2)+ s/V0 +1], (25)

x̃(j, s)=
(V2(j)/V2

0 )(1+ s/V0)v0/V2
0

(s2/V2
0 +V2(j)/V2

0)(s3/V3
0 + s2/V2

0(1+ mp/2)+ s/V0 +1)
. (26)

It is easy to show using the Routh stability criterion [6] that the roots of the cubic
polynomial in the denominator of equation (25) lie in the left half of the complex s-plane
for all positive values of m. The time domain response xM (t) therefore damps exponentially.
The roots of the denominator of equation (26) are the left half-plane roots of the cubic,
plus the two purely imaginary roots corresponding to the quadratic factor. The response
x(j, t) therefore consists of exponentially decaying terms plus an undamped sinusoidal
term.

It is possible to give explicit formulas for the inverse Laplace transforms corresponding
to equations (25) and (26), but the expressions are long. Instead, Figure 2 shows plots of
xM (t) and x(j, t) for mp/2=0·2 and for three particular values of j. The displacement
xM (t) decays exponentially to zero, with time constants determined by the real parts of
the roots of the cubic equation in the denominator of equation (25). The distributed
oscillator displacement x(j, t) is identically zero at j=0, since k(j)=0 for j=0, and
thus there is no coupling to the primary oscillator. As j:1, k(j) approaches infinity (rigid
coupling to the primary oscillator) and thus x(j, t):xM (t) as j:1. For 0Q jQ 1, x(j, t)

Figure 1. Primary mechanical oscillator connected to continuously distributed secondary oscillators.
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Figure 2. Dynamic responses (a) xM (t) and x(j, t) for mp/2=0·2 and (b) j=0·25, (c) 0·5, (d) 0·75.

attains a steady state oscillation, as discussed above, and as shown by the responses for
the three values j=0·25, j=0·5 and j=0·75 shown in Figure 2.

The system described by equations (1) and (2) is conservative; equations (1) and (2)
imply that

d
dt 61

2Mẋ2
M(t)+ 1

2k0x2
M(t)+g

1

0

dj [12m(j)ẋ2(j, t)+ 1
2k(j)(x(j, t)− xM )2]7=0, (27)

so that the total energy

E= 1
2Mẋ2

M(t)+ 1
2k0x2

M(t)+g
1

0

dj [12m(j)ẋ2(j, t)+ 1
2k(j)(x(j, t)− xM )2] (28)

is constant. For the initial conditions assumed here, the total energy is

E= 1
2Mv2

0. (29)

As a check on the solution for xM (t) and x(j, t), the energy E given by equation (28) is
computed as t:a. As t:a, xM (t) and ẋM (t) go to zero, and x(j, t) can be obtained by
evaluating the contribution to the inverse Laplace transform of the purely imaginary roots
of the quadratic factor in the denominator of equation (26). This gives

xss (j, t)= (v0/V2
0)A(j) eiV(j)t +c.c., (30)

where

A(j)=
1
2i

(V(j)/V0)(1+ i(V(j)/V0))
−i(V3(j)/V3

0)− (V2(j)/V2
0)(1+ mp/2)+ i(V(j)/V0)+1

. (31)
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The quantity xss (j, t) is the steady state (t:a) value of x(j, t), and c.c. denotes the
complex conjugate. The steady-state value of the total energy E is

Ess =g
1

0

dj [12m(j)ẋ2
ss(j, t)+ 1

2k(j)x2
ss(j, t)] (32)

=g
1

0

dj [12m(j)ẋ2
ss(j, t)+ 1

2V
2(j)m(j)x2

ss(j, t)]. (33)

Using equation (30), the steady state energy in equation (33) is

Ess =
v2

0

V2
0 g

1

0

dj 2m(j)V2(j)=A(j)=2. (34)

Substitution of the expressions for m(j) and A(j) given by equations (13) and (31) into
equation (34) gives

Ess =
v2

0

V2
0 g

1

0

dj
2mM

(1− j)2 + j2

V2(j)
4

× b (V(j)/V0)(1+ i(V(j)/V0))
−i(V3(j)/V3

0)− (V2(j)/V2
0)(1+ mp/2)+ i(V(j)/V0)+1b

2

(35)

=
v2

0

V2
0 g

1

0

dj

(1− j)2

mM
1+ j2/(1− j)2

V2(j)
2

× b (V(j)/V0)(1+ i(V(j)/V0))
−i(V3(j)/V3

0)− (V2(j)/V2
0)(1+ mp/2)+ i(V(j)/V0)+1b

2

. (36)

Again making the change of variables u= j/(1− j), equation (36) becomes

Ess =
v2

0

V2
0 g

a

0

du
mM

1+ u2

V2
0u

2

2 b (1+ iu)u
−iu3 − u2(1+ mp/2)+ iu+1b

2

(37)

= 1
2Mv2

0m g
a

0

du b u2

−iu3 − u2(1+ mp/2)+ iu+1b
2

. (38)

The integral in equation (38) can be evaluated using the tabulated results in reference [7];
the result is

Ess = 1
2Mv2

0m(1/m)= 1
2Mv2

0, (39)

which confirms that the initial kinetic energy of the mass M equals the energy in the steady
state vibration of the distributed oscillators.

If the number of secondary oscillators in Figure 1 is finite, the system consisting of the
primary plus secondary oscillators has a finite number of real natural frequencies, and the
response to any set of initial conditions is a linear combination of undamped oscillations
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at the natural frequencies of the system. The response of such a system is quasi-periodic
[8], and such a system cannot exhibit damping. As the distribution of secondary oscillators
becomes continuous, the distribution of the natural frequencies of the system may also be
thought of as becoming continuous, and the continuous distribution of undamped
oscillations may be superposed to produce a response with exponential damping.

The set of continuously distributed oscillators considered here may also be interpreted
as a ‘‘heat reservoir.’’ The initial mechanical energy of the primary oscillator is transformed
into steady state vibration of the set of secondary oscillators (‘‘heat’’), and never returns
to the primary system as mechanical energy.
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